
Astronomical Data Analysis Software and Systems XVII P8.13

ASP Conference Series, Vol. 394, c© 2008
R. W. Argyle, P. S. Bunclark, and J. R. Lewis, eds.

The Transform Library − A High-Level Interface to
Coordinate Systems

Janine Lyn, Douglas Burke, Mark Cresitello-Dittmar, Stephen Doe, Ian
Evans, Janet DePonte Evans, Gregg Germain, Jonathan McDowell,
Joseph Miller

Smithsonian Astrophysical Observatory, 60 Garden Street, M.S. 67,
Cambridge, MA, 02138, USA

Abstract. The Transform Library is a new, stand-alone software package
developed by the Chandra X-ray Center (CXC), that provides a convenient high-
level C++ interface for performing World Coordinate System transformations.
The library wraps a subset of the lower-level wcslib functions to provide an easy
interface to both users and developers. The Transform library is designed to
be used within C++ programs and various scripting environments. Notably, it
provides high-level user interfaces in Python and S-Lang for ease of use.

The Transform Library consists of C++ classes and methods for performing
transformations on input base arrays (table data or image axes), for accessing
and manipulating required transform parameters, and for calculating the trans-
form matrix. Transform types include pixel to world coordinate transforms and
vice versa, as well as linear transforms and scaling transforms. The design allows
for transform chaining, so the user is able to combine multiple transforms into
more complex arrangements.

The Transform Library will be integrated in the new versions of ChIPS and
Sherpa that will be released in CIAO4. In addition, CIAO users will be able to
use the library directly via the scripting languages. This provides the ability to
easily create highly specialized applications to suit the user’s particular needs.

1. Introduction

The Transform Library was designed as an independent library which would
provide an easy way of storing and manipulating transforms and their parame-
ters, and a transparent way of computing the transformed values of virtual data
columns and image axes. It is currently being used in Crates, the CXCDS I/O
interface to the DataModel, and has been incorporated into Sherpa, a spectral
and spatial fitting package, and ChIPs, a plotting package.

Figure 1 illustrates the Transform Library’s design architecture and its re-
lationship to other libraries and interfaces. The Transform Library is composed
of a C++ library and higher-level user interfaces in Python and S-Lang. These
main components are discussed in the following sections.

2. The Transform Library C++ Layer

The C++ library consists of a base Transform class with several derived classes
which extend the transform definition and provide the same user interface for
all Transforms. Each Transform sub-class already knows what parameters it

658

The Transform Library 659

Figure 1. An Overview of the Design Architecture. The starred (*) boxes
indicate the main components of the Transform Library.

needs, the dimensionality and datatype of the input data, and how to perform
the calculation.

The Transform class, in order to be more generally usable, applies the trans-
form to a base array of data of a particular datatype and returns the transformed
values in the same datatype. If possible, the class can also perform the inverse
transformation on an input array. The derived classes also contain overloaded
apply and inverse methods to accommodate most datatypes.

The Transform metadata are stored in a simple class called TransParam.
All Transform sub-classes have methods for querying the Transform for a list of
its parameters. The resulting parameter list only requires user-input parameter
values.

Table 1 contains a brief description of each of the Transform sub-classes
and their required parameters.

3. The Controller Transforms

Additionally, the C++ Library contains two Controller Transforms which extend
the Transform class and are responsible for managing the execution of a group
of transforms.

• SERIAL Transforms let the user arrange member transforms to be executed
sequentially.

• PARALLEL Transforms apply their member transforms concurrently.

These Transforms allow the user to create complex reusable arrangements
with numerous Transforms while facilitating data handling and transform ap-
plication.

Table 2 presents a step-by-step example of how to use the Controller Trans-
forms to implement a Polynomial Transform as represented in Figure 2.

660 Lyn et al.

Table 1. The Transform Sub-Classes

Sub-Class Action Parameters

ADD add elements of two inputs none
LINEAR linear scale SLOPE, INTERCEPT
LINEAR2D apply 2D linear transform SCALE, OFFSET, ROTATION
MULT multiply elements of none

two inputs
POLY apply polynomial transform CONST A, CONST B, OFFSET
POW raise to power EXPONENT
SCALE multiply by a factor FACTOR
SQR square none
SUM sum all inputs none
WCSTAN apply WCS transform CRPIX, CRVAL, CDELT, CROTA
SERIAL (see Section 3)
PARALLEL (see Section 3)

Table 2. Sample code for building a Polynomial Transform. The user has the
POLY Transform class available and should not need to create one by hand.

Transform: result = x2 + ax where x is a N element array and a is a constant

// Create a SQR transform with name = ‘t1’
Transform* t1 = new SQRTransform(‘t1’);

// Create a SCALE transform with name = ‘t2’
Transform* t2 = new SCALETransform(‘t2’);

// Retrieve the FACTOR parameter and input the scale factor for t2
TransParam* params = t2→get parameter(‘FACTOR’);
params→set value(a);

// Create a PARALLEL transform to execute t1 and t2 concurrently
Transform* t3 = new PARALLELTransform(t1, t2);

//Create an ADD transform
Transform* t4 = new ADDTransform();

// Create a SERIAL transform to add the resulting arrays of t3 and t4
Transform* t5 = new SERIALTransform(t3, t4);

// Apply the t5 transform to the x array
result = t5→apply(x);

The Transform Library 661

Figure 2. A graphical representation of the data-flow inside the composite
Polynomial Transform: result = x2 + ax.

4. Wrappers and High-Level User Interfaces

The Transform Library is extensible to other scripting environments. By us-
ing SWIG (Simplified Wrapper and Interface Generator) to create wrappers in
Python to interface with the C++ layer, all Transform classes and most methods
are accessible through the Python wrappers.

The Library also provides several higher-level methods for use in both
Python and S-Lang (via PySL and the S-Lang wrappers):

• apply inverse transform
• apply transform
• get axis transform
• get transform
• get transform matrix
• print axis names
• print transform
• set transform
• set transform matrix

Acknowledgements. Support for the development of the Transform Li-
brary is provided by the National Aeronautics and Space Administration through
the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical
Observatory for and on behalf of the National Aeronautics and Space Adminis-
tration contract NAS8-03060.

